tymanum, although there was little blood. The lizard was left at the site in case the kestrel returned for it. The air temperature at the time of the observation was ~35°C.

Although we did not observe prey capture, kestrels are generally hunters rather than scavengers (Olsen et al. 1979. Emu 79:133–138), suggesting that the raptor caught and killed the lizard just before we arrived (the lizard was in good condition). It is possible that the reproductive condition of the lizard contributed to its vulnerability to capture, as it was heavily egg-laden. Ring-tailed Dragons are common at the site, and are generally common in rocky areas where they forage for insects during the day, often at very hot temperatures. Kestrels are also relatively common at the site, and lizards are generally an important prey item; in one study lizards made up ~90% of prey items by weight (Aumann 2001. Wildl. Res. 28: 379–393). In that study agamids were found in 53% of regurgitated pellets, and C. nuchalis, a conger of C. caudicinctus, was the most common reptilian prey item.

J. SEAN DOODY, Department of Ecology & Evolutionary Biology, University of Tennessee, 569 Dabney Hall, Knoxville, Tennessee 37996-1610, USA (e-mail: jsdoody@gmail.com); BRENDAN SCHEMBRI, 2/26 Sergusson Circuit, Rapid Creek, Northern Territory 0810, Australia (e-mail: herpo88@hotmail.com).


EVLGENI A. GOLYNSKY, Department of Herpetology, Zoological institute of Russian Academy of Sciences, St. Petersburg 199034, Russia (e-mail: egolinsky@mail.ru); IGOR V. DORONIN, Department of Herpetology, Zoological institute of Russian Academy of Sciences, St. Petersburg 199034, Russia (e-mail: iodoronin@mail.ru).

ELGARIA PAUCICARINATA (San Lucan Alligator Lizard). FIELD AND PREFERRED BODY TEMPERATURES. Elgaria paucicarinata is a small terrestrial lizard endemic to the mountain and foothill habitats of the Cape Region in Baja California (Grismer 2002. Amphibians and Reptiles of Baja California, Including its Pacific Islands and the Islands in the Sea of Cortés. Univ. Califor- nia Press, Berkeley and Los Angeles, California. 399 pp.). Little is known about the ecology of this lizard, and even less about the thermal ecology. We present data on E. paucicarinata thermal ecology from Sierra de La Laguna Biosphere Reserve on the Cape Region, Baja California Sur, México. We conducted fieldwork at Segundo Vallee (23.55251°N, 109.98689°W, WGS84; elev. 1770 m) on 12–14 July and 20–22 September 2011. The site is predominated by pine-oak forest vegetation (e.g., Pinus lagunae, Quer- cusb devia, Arbuthus peninsularis), perrenial herbs, leaf litter, and granitic rocks (Arriaga and Ortega [eds.] 1988. La Sierra de la Laguna de Baja California Sur. CIBNOR, Mexico. 247 pp.). Data are based on 20 individuals (adults and juveniles) captured by hand between 0900 and 1900 h. Sex was not determined because of the lack of sexually dimorphic characters. We measured body temperature (Tb) and air temperature (Ta) with a quick-reading thermometer (Fluke 52 K/F type) immediately following capture. The substrate temperature (Ts) was measured with a non- contact infrared thermometer (Raytek Raynger ST®) at the exact point where the animal was first sighted and Ts 2 cm above the substrate. We recorded data on snout–vent length (SVL), time of capture, microhabitat type, and light condition (full sunlight, filtered sunlight, and full shade). We brought five adult individuals into a laboratory thermal gradient to measure the preferred body temperatures (Tp). The thermal gradient consisted of a glass ter- rarium 76 × 30 × 45 cm (long/width/high), with soil and leaf litter, located in a room with a controlled temperature of 20°C. We offered a thermal gradient of 20–37°C by placing two 100-W daylight blue bulbs at different heights in one end of the terrarium. We took body temperatures every hour between 0900 and 1500 h, with the same thermometer used in the field.

Mean SVL was 96.8 mm (SD = 20.6, range: 58–120 mm, N = 12). Mean field Tp was 25.4°C (SD = 3.2, range: 20–31.2°C, N = 20). Mean Ta was 20.8°C (SD = 1.5, range: 17.5–24.1°C) and mean Ts was 24°C (SD = 3.6, range: 19.2–31.8°C). Both Tp and Ta were significantly correlated with body temperature (Spearman Rank Correlation, r = 0.80, r = 0.84, P < 0.0001, respectively). Most lizards were found on leaf litter with plant cover (N = 13), followed by leaf litter on open areas (N = 5), oak logs, and rocks (N = 1); and in full shade microhabitats (N = 11), followed by full sunlight (N = 6) and filtered sunlight (N = 3). The mean Tp was 25.8°C (SD = 3.4, range = 20.5–30.9°C). Interquartile of 25% and 75% was 24.6°C and 27.9°C, respectively. E. paucicarinata mean body temperature is higher than other Elgaria species (E. coerulea = 15.8°C, Brattstrom 1965. Am. Midl. Nat. 73(2):376–422; E. mul- ticarinata = 21°C, Beck 2009. In Jones and Lovich [eds.], Lizards of the American Southwest, pp. 484–487. Rio Nuevo Publishers, Tucson, Arizona). Compared with other gerrhonotine lizards, E. paucicarinata has a slightly lower Tp than Barisia imbricata (26.6°C; Lemos-Espinal et al. 1998. Amphibia-Reptilia 19:95– 99). The positive correlation of Tp with Ta suggests that E. paucicarinata is not clearly thigmothermic or heliothermic. Light condition preference data give support to a thigmothermic model where lizards gain heat by moving between microhabitats with different sunlight categories, because lizards were found in open and plant-covered areas. The similarity of Tp and field Ts suggests that E. paucicarinata thermoregulates, but an assessment of the thermal environment is needed to determine the patterns of thermoregulation of this species.

We thank Anny Peralta-Garcia for comments on the manuscript, and Abinelo Cota and Franco Cota for their help during fieldwork.

JORGE H. VALDEZ-VILLAVICENCIO, Conservación de Fauna del Noroeste, A.C., La Paz, Baja California Sur, 23205, México (e-mail: j_h_val- dez@yahoo.com.mx); PATRICIA GALINA-TESSARO, Centro de Investigaga- ciones Biológicas del Noroeste, S.C. (CIBNOR), La Paz, Baja California Sur, 23096, México (e-mail: pgalina04@cibnor.mx).